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Optimal Consumption in a Frictionless World: Complete Markets

To understand consumption under uncertainty, we start with the bench-
mark case of complete markets. Complete asset markets e¤ectively allow
consumers to buy insurance against any contingency (or to sell insurance).
This is possible because there exist assets with returns di¤erentiated across
every state of nature, and, subject to an overall budget constraint, individuals
can purchase any (positive or negative) amount of such assets.
This is not realistic � although one way to read the proliferation of exotic

derivative products in recent years is as an evolution of real-world markets
toward the ideal of completeness.
Why, then, consider this case? Because the availability of this benchmark

� like the hypothetical "frictionless plane" in physics � allows us to get a
handle on more complex problems. For example, Newton�s law F = ma is
counterintuitive until one learns to abstract from the force exerted by friction.
Assumptions. Let�s start with a pure endowment model (no investment

or production). There are two periods. On date 1, individual i�s endowment
is yi. From the perspective of date 1, however, the date 2 endowment is a
random variable. There are also only two possible states of nature on date
2. In state 1 the endowment is yi(1), in state 2 it is yi(2):
Let ci denote the individual�s date 1 consumption, ci(1) and ci(2) the

individual�s contingency plans for consumption on date 2. The plans are
contingent on the state that actually occurs on date 2. The probability that
state s occurs is �(s), where, summing over all states s, �s�(s) = 1:
A key hypothesis is that the individual chooses the consumption plan

that maximizes average lifetime utility,

U i = �(1)
�
u(ci) + �u

�
ci(1)

�	
+ �(2)

�
u(ci) + �u

�
ci(2)

�	
= u(ci) + �

�
�(1)u

�
ci(1)

�
+ �(2)u

�
ci(2)

�	
= u(ci) + �Eu

�
ci(s)

�
;
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where c(s) denotes consumption in state s. This is the von Neumann-
Morgenstern expected utility criterion and, being linear in probabilities, it is
somewhat special. One of its consequences (as we shall see) is that it forces
the intertemporal substitution elasticity to equal the (inverse) coe¢ cient of
absolute risk aversion for isoelastic utility. We shall de�ne the risk aversion
coe¢ cient later.
A basic Arrow-Debreu security for state s pays its owner 1 unit of output

on date 2 if state s occurs and nothing otherwise. (In contrast, a riskless
bond pays its owner the same amount of output in every state.)
Let r be the rate of interest on a bond. We de�ne r by the de�nition

that 1=(1 + r) is the price (all prices are in terms of date 1 consumption) of
a bond paying its owner 1 unit of output on date 2 regardless of the state of
nature. We further de�ne

p(s)

1 + r
= date 1 price of the Arrow-Debreu state s security.

Suppose you were to buy exactly one Arrow-Debreu security for each possible
state s. What would we call this "bundle" of assets, which pays you exactly
1 unit of output on date 2 regardless of the state? The name is bond. Thus
we have the arbitrage relation:X

s
p(s) = 1:

Think of there as being three goods in the model � date 1 consumption
and date 2 consumption contingent on state of nature. The Arrow-Debreu
assets�prices de�ne the prices of future contingent consumptions. So indi-
vidual i maximizes U i subject to the lifetime budget constraint

ci +
p(1)

1 + r
ci(1) +

p(2)

1 + r
ci(2) = yi +

p(1)

1 + r
yi(1) +

p(2)

1 + r
yi(2): (1)

Individual choice. As in our prior, deterministic model people smooth
consumption across dates (subject to intertemporal price incentives), but
they also plan to have smooth consumption across states � subject to inter-
state price incentives.
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We see how this works by writing down the usual Lagrangian for maxi-
mizing U i subject to (1) and �nding the �rst-order conditions:

u0(ci) = �i;

�� (s)u0
�
ci(s)

�
= �i

p(s)

1 + r
:

Combine these to get

u0(ci)
p(s)

1 + r
= �� (s)u0

�
ci(s)

�
;

the Euler equation for the state-s Arrow-Debreu security. Interpretation: At
an optimum, the preset utility forgone by buying the asset just equals the
future utility it is expected to yield. The conditions (just add them up) also
imply the stochastic Euler equation for bonds,

u0(ci) = (1 + r)�Eu0
�
ci(s)

�
:

Notice that the ratio of marginal utilities across states on date 2 is

u0 [ci(1)]

u0 [ci(2)]
=
p(1)=�(1)

p(2)=�(2)
:

When p(s) = �(s), we say that prices are actuarially fair. In general they
need not be, in which case people will not elect to insure their consumption
completely (arrange for equal consumption in every state of nature). In gen-
eral, the prices p(s) will re�ect not only the state probabilities �(s), but also
the aggregate output levels in various states, with p(s)=�(s) being relatively
higher in states where aggregate output is relatively scarce.
There are some important implications for the comovements of individual

consumption levels over time. If individuals face common prices and have
common probability assessments �(s) and discount factors �, then for any
consumers i and j, and for any state s,

u0 [ci(s)]

u0(ci)
=
u0 [cj(s)]

u0(cj)
:

For the isoelastic utility function, this implies

log
�
ci(s)=ci

�
=
�i
�j
log
�
cj(s)=cj

�
:
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Thus consumption growth rates are perfectly correlated. Studies of micro-
data tend to reject this implication of complete markets.
Applications of Arrow-Debreu prices. AD prices are useful in a complete-

markets setting because they give a market valuation of output available in
various states. We then can value contingent output as we would any other
good. Applications include investment under uncertainty and asset pricing.
Regarding investment, imagine that future output is given by A(s)F (K);

where K is capital accumulated prior to production [and the realization of
the productivity shock A(s)]. One unit of output translates into one unit of
installed capital (contrary to the q model to be discussed later) and capital
depreciates at rate �. Under certainty the rule for optimal capital would be
1 = (1 + r)�1[AF 0(K) + 1 � �]. (Why?) Under uncertainty with complete
markets, we can simply add up the capital�s possible future products state
by state and price those using the AD prices:

1 =
X

s

p(s)

1 + r
[A(s)F 0(K) + 1� �]:

Next suppose we have an asset that pays a dividend d(s) in state s: If
we are in a two-period world (so that asset value is zero after the dividend
pay-out), the asset price is given simply by

q =
X

s

p(s)

1 + r
d(s):

Using the Euler equation for AD securities, we can alternatively write this
as

q = �
X

s

�(s)u0 [c(s)]

u0(c)
d(s);

which can be re-written as the asset Euler equation

u0(c)q = �E fu0[c(s)]d(s)g , q = E

�
�u0[c(s)]

u0(c)
d(s)

�
(Whose intertemporal marginal rate of substitution �u0[c(s)]=u0(c) are we
using above? Does it matter?)
For a long-lived asset in a economy with more time periods we would

instead have

qt = Et

�
�u0(ct+1)

u0(ct)
(dt+1 + qt+1)

�
;
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a stochastic di¤erence equation in qt. The intertemporal marginal rate of
substitution �u0(ct+1)=u0(ct) is also called the pricing kernel.

Optimal Consumption with Incomplete Markets

Let us analyze, more generally, a situation where asset markets mat be
incomplete.
To lead in to the permanent income/life-cycle discussion, I now assume

an in�nite horizon.
Dynamic programming of consumption and portfolio choice. The con-

sumer maximizes expected lifetime utility beginning at date t = 0;

E0

( 1X
t=0

�tu(ct)

)
:

There are N risky assets with random net real returns rit between the end
of date t and start of t + 1. The individual enters t with �nancial assets at,
receives wages wt, and consumes ct. Assets plus new savings at +wt� ct are
then allocated among the N available assets, with xit denoting the portfolio
share of the ith asset. The gross payo¤s on the portfolio sum to assets at the
start of t+ 1, at+1. The implied constraints are a given initial asset level a0
plus:

at+1 =
NX
i=1

xit(1 + r
i
t+1)(at + wt � ct);

NX
i=1

xit = 1:

Let V (at) denote the value function at the start of period t.1 The Bellman
equation for the problem is the recursive relationship

V (at) = max
ct;xit

fu(ct) + �EtV (at+1)g ;

1More generally, if wages follow a Markov process, current and possibly past wages
would appear as additional state variables in the value function. Because wages are not
chosen by the consumer, however, I simplify the notation by suppressing the dependence
of the value function on the wage process.
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where the maximization is done subject to the preceding two constraints.
To derive the �rst-order conditions for a maximum, set up the Lagrangian

u(ct) + �Et

(
V

"
NX
i=1

xit(1 + r
i
t+1)(at + wt � ct)

#)
� �

 
NX
i=1

xit � 1
!
:

The �rst-order conditions for a maximum are

u0(ct)� �Et

(
NX
i=1

xit(1 + r
i
t+1)V

0(at+1)

)
= 0

and, for all assets i,

�Et
�
(1 + rit+1)V

0(at+1)
	
(at + wt � ct)� � = 0:

Multiply the last condition by xit (which is known as of date t; because it
is chosen then) and sum over i = 1; :::; N . The implication is that u0(ct) =
�= (at + wt � ct) : As a result, by the envelope condition

u0(ct+1) = V
0(at+1);

we �nd that for every available asset i,

u0(ct) = �Et
�
(1 + rit+1)u

0(ct+1)
�
:

So an Euler equation holds for each asset even if markets are incomplete and
human capital is not tradable.
Quadratic case: Hall�s random walk hypothesis. Let there be an asset

with the riskless real return r. Its Euler equation is

u0(ct) = (1 + r)�Et [u
0(ct+1)] :

Assume that u(ct) has the quadratic form

u(ct) = act �
b

2
c2t

and that (1 + r)� = 1: (Quadratic utility is at best an approximation; taken
literally and globally, it would imply the possibility of negative marginal
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utility of consumption.) Because u0(c) = a � bc; the Euler equation implies
Hall�s random-walk hypothesis:

ct = Etct+1:

Hall�s basic idea is to test this relationship rather than to estimate a
structural consumption function.
A key implication is that consumption should respond to unexpected

news, but not to predictable events. The reason is that technically speaking,
consumption is a martingale (a special case of a random walk). Thus, we can
write the consumption process as

ct+1 = ct + ut+1

where ut+1 is uncorrelated with any information known as of date t:
This is the key implication being tested in Hsieh�s paper on the Alaska

fund in the AER (see the 202A reading list). He �nds that Alaska fund oil
dividends, which are substantial and quite predictable as to amounts and
timing, do not a¤ect Alaskans�consumption when they are paid out.
The certainty-equivalent consumption function. Consider a world in which

risk-free bonds are the only asset. Ex post, and with an in�nite horizon,
consumption must satisfy the intertemporal constraint

1X
t=0

ct
(1 + r)t

= a0 +
1X
t=0

wt
(1 + r)t

:

Ex ante, we there fore have

E0

1X
t=0

ct
(1 + r)t

= a0 + E0

1X
t=0

wt
(1 + r)t

:

Because E0ct = E0Et�1ct = E0ct�1 = E0ct�2 = ::: = c0; we can solve for c0:

c0 =
ra0
1 + r

+
r

1 + r
E0

1X
t=0

wt
(1 + r)t

:

This formulation gets at Milton Friedman�s idea of "permanent income"
as a determinant of consumption: the present value of wage income is what

7



matters in the consumption function (along with the interest yield on �nan-
cial wealth). Accordingly, permanent changes in wages will have a bigger
e¤ect on consumption than will transitory changes. The life-cycle hypothesis
of Franco Modigliani and Richard Brumberg is motivated by similar eco-
nomics, but accounts for the typical lifetime income cycle. The age-earnings
pro�le is usually positively sloped, then �attens out, then drops sharply with
retirement. Accordingly, workers will tend to dissave while young, pay back
debt and accumulate wealth during prime earning years, then retire on sav-
ings and accumulated pension bene�ts.
Precautionary saving behavior. The certainty equivalent model contains

no true role for risk. As an alternative consider the utility function

u(c) =
c1�R � 1
1�R :

The expression

�cu
00(c)

u0(c)
= R

is known as the Arrow-Pratt coe¢ cient of relative risk aversion. Of course,
it is also 1=�, where � is the intertemporal substitution elasticity � an
equivalence that is sometimes unfortunate but that can be relaxed with more
general utility speci�cations.
With � = (1+r)�1; assume also that the distribution of log ct+1 is normal

from the perspective of date t. That is, assume that

log ct+1 � N(Et log ct+1; �2t ):

By the properties of the lognormal distribution, the Euler equation is

c�Rt = Etc
�R
t+1

, c�Rt = e�REt log ct+1+
R2

2
�2t :

Because ct = elog ct, taking logs of both sides gives

log ct = Et log ct+1 �
R

2
�2t :

So here we have an e¤ect of consumption variance on the level of con-
sumption: higher variance lowers consumption today, and therefore increases
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saving. This precautionary saving e¤ect is proportional to the measure of risk
aversion, R.
More generally, the Euler equation in this case reads

u0(ct) = Etu
0(ct+1):

A mean-preserving expansion in the variance of ct+1 must raise Etu0(ct+1) if
u0(c) is a strictly convex function of c, that is, if the third derivative u000(c) > 0:
(This follows from Jensen�s inequality.) If Etu0(ct+1) rises, so does u0(ct),
which means that ct falls and saving rises. So a positive third derivative
of utility leads to precautionary saving. For the quadratic utility function,
u000(c) = 0, so there is no precautionary saving in that case.
Another way to see the impact of higher consumption variability on Eu0(c)

is through a second-order approximation. Let �c � Ec: Then, taking a Taylor
approximation around c = �c gives us

u0(c) � u0(�c) + u00(�c)(c� �c) + 1
2
u000(�c)(c� �c)2:

Taking expected values lead to

Eu0(c) � u0(�c) + 1
2
u000(�c)Var(c):

Thus, when (and only when) the third derivative u000 is positive, a rise in the
variance of consumption Var(c), holding the expected level �c constant, raises
Eu0(c):
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Economics 202A, Problem Set 4
Maurice Obstfeld

1. Interest rates and consumption. An individual has the exponential
period utility function

u(C) = �e�C=

( > 0) and maximizes

u(Ct) + �u(Ct+1)

(0 < � < 1) subject to the budget constraint

Ct +RCt+1 = Yt +RYt+1 � Wt

[where R = (1 + r)�1; so that a fall in the real interest rate r means a
rise in the market discount factor R].

(a) Solve for Ct+1 as a function of Ct, R, and � using the consumer�s
intertemporal Euler equation.

(b) What is the optimal level of Ct, given Wt, R, and �? [In other
words, solve for the date t consumption function.]

(c) By di¤erentiating your consumption function (including Wt) with
respect to R, show that:

dCt
dR

= � Ct
1 +R

+
Yt+1
1 +R

+


1 +R
[1� log(�=R)] :

[Hint: Your consumption function has the form C = f(W;R)=(1 +
R):Therefore,

dC

dR
= � C

1 +R
+

1

1 +R

�
@f

@W

dW

dR
+
@f

@R

�
;

which gives you half the answer.]

(d) What is the intertemporal substitution elasticity for the exponential
utility function? [Calculate this elasticity at an allocation where Ct =
Ct+1 = C. It is a function �(C) of C, not a constant.]
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(e) Show that the derivative calculated in part (c) above can be ex-
pressed as

dCt
dR

=
�(Ct+1)Ct+1
1 +R

+
Yt+1 � Ct+1
1 +R

:

(f) Explain intuitively why, for someone with Yt+1 > Ct+1; a rise in
R (that is, a fall in the real interest rate r), unambiguously raises
consumption on date t:

2. Optimal consumption with incomplete markets. A consumer has the
quadratic period utility function u(C) = �C� (=2)C2 and maximizes
u(Ct) + �u(Ct+1) subject to the constraints

At+1 = (1 + r)At + Yt � Ct; At given,

Ct+1 = (1 + r)At+1 + Yt+1(s); s 2f1; 2; :::; Sg :
Here, r is the real rate of interest (so that 1=(1+ r) is the current price
of a unit of output delivered next period with probability 1). Let �(s)
be the probability of state of nature s from the perspective of date t
and assume that � = 1= (1 + r).

(a) Ignore for the moment the constraint that date t+ 1 consumption
be nonnegative. Compute and interpret the optimal level of Ct.

(b) Suppose the consumer has an in�nite horizon and there is uncer-
tainty over output on all future dates. Use your answer to (a) to guess
the consumption function and use the �random walk�result to prove
that your guess is correct.

(c) Let�s return to the 2-period case in part (a) but now take seriously
the constraint that

Ct+1(s) � 0; 8s:
Renumber the states of nature s (if necessary) so that

Yt+1(1) = min
s
fYt+1(s)g :

Show the following: If

(1 + r)At + Yt � Et fYt+1g > �(2 + r)Yt+1(1)=(1 + r);
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then the result in (a) still holds. (Why, intuitively?) Otherwise, the
consumption function is:

Ct = (1 + r)At + Yt + Yt+1(1)=(1 + r):

(d) Still thinking about the 2=period case, suppose the consumer faces
complete asset markets such that p(s); the price in terms of sure date
t + 1 output of a state-s contingent unit of date t + 1 output, equals
�(s). Compute the optimal value of Ct. Do we gave to worry now
about the non-negativity constraint on date t+ 1 consumption?
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