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Endogenous Growth

We have already seen one crude endogenous growth model, the so-called
“AK”model. It is crude because it does not give a realistic account of the
channels through which productivity grows over time —namely, innovation
and the creation of new knowledge.
We now turn to a class of models that indeed endogenize the innovative

process. The challenge in thinking about these problems is that the creation
of knowledge, which has a public-good aspect, is different from the production
of other economic goods.
The endogenous growth literature began with contributions of Robert

Lucas and especially Paul Romer in the 1980s and 1990s, although the ideas
certainly had important precursors in the growth literature of the 1960s.

A Model of Endogenous Growth: The Basic Idea

The model builds on some of the ideas about differentiated products that
also underlie the “new trade theory”developed by Paul Krugman and others
in the late 1970s and early 1980s. In the model, additional “varieties” of
differentiated capital goods will boost productivity, and the process through
which new capital goods are invented is endogenized.
In this economy, production of a final consumption good is given by

Yt = F (K1,t, ..., KAt,t, LY,t) =

(
At∑
j=1

Kα
j,t

)
L1−αY,t =

At∑
j=1

Kα
j,tL

1−α
Y,t ,

where LY,t is the amount of labor employed in the final goods sector at t and
j ∈ {1, 2, ..., At} indexes the different types of capital that can be used in
production as of t. Labor not devoted to final-goods production will, as we
shall see, be devoted to research and development into new capital goods.
We assume that the capital depreciation rate is δ = 1, so that the price

of a machine is its rental rate.
Note some interesting features of this production setup. At any point in

time, there are constant returns to scale with respect to the existing factors of
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production, no matter how many there are. But while the marginal product
of an existing capital good is finite, the marginal product of a new capital
good is infinite.
A different thought experiment gives a good illustration of why the pre-

ceding production function can generate endogenous growth. Imagine com-
bining 1 unit each of N capital goods with 1 unit of Labor; we get Y = N .
Instead, imagine we combine N/(N + 1) units each of N + 1 capital goods
with 1 unit of labor. We get

Y =

N+1∑
j=1

(
N

N + 1

)α
= (N + 1)

(
N

N + 1

)α
= Na (N + 1)1−α > N.

So with more capital goods, the output/labor ratio rises holding constant the
amount of capital input (measured in terms of consumption goods). Thus,
the creation of new capital goods has the potential to raise productivity and
per-worker output over time.
Notice, finally, that if Kj,t = K̃t for all varieties j (as is the case in

equilibrium when all goods are symmetric), then

Yt =
At∑
j=1

K̃α
t L

1−α
Y,t = AtK̃

α
t L

1−α
Y,t = K̃α

t

(
A

1
1−α
t LY,t

)1−α
,

so the production side looks equivalent to what we assumed for the Solow
model. What we will add, as we now show, is a model of how At grows
endogenously over time.

Production of Capital Goods and Blueprints for New Goods

To produce one unit of capital (of any kind) you need exactly one unit of
final output. Capital goods are produced by monopolistic firms. To set up
a firm you need to purchase a blueprint for the specific variety j of capital
good you will produce. (The cost of the blueprint is sunk.) You can then
use a unit of output on date t to yield a unit of your capital good j on date
t+ 1, which you sell (rent) at price pj.
We will assume that more labor devoted to research and development

(R&D) results in an expanded set of blueprints allowing the production of
more varieties of capital. Specifically, if LA is labor input to the R&D sector,

At+1 − At = θAtLA,t. (1)
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According to eq. (1), labor productivity in R&D is proportional to the exist-
ing stock of “knowledge”—so in effect, we have learning by doing. This as-
sumption captures the important idea that, as a public good, new knowledge
is nonrival (more than one person can use it at the same time) and nonex-
cludable (people cannot be prevented from using knowledge). The learning
by doing is external to firms; each firm in R&D behaves competitively.1

A blueprint can be put into use the very same period in which it is
developed. The total labor force L is constant and fully employed,

L = LY + LA.

Solving the Model: First Steps

The key is to figure out how the labor force is divided between final-goods
production and R&D. The more labor goes into R&D, the faster the growth
rate of the economy. The level of output of blueprints, in turn, depends on
their price in terms of final goods, pA.
Let us conjecture that in equilibrium we will observe a constant real rate

of interest r, constant relative prices, a constant demand for each type of
capital, and a constant allocation of labor to sectors of the economy. (Later
we show that these guesses are all correct.) Let us start by considering the
demand of final-goods firms for capital goods, given by the solution to

max
{Kj}

At∑
j=1

Kα
j L

1−α
Y −

At∑
j=1

pjKj − wLY ,

where pj (once again) is the output price of capital of type j and w is the
wage in terms of final output. The first-order condition for a maximum for
Kj is

pj = αKα−1
j L1−αY . (2)

1Think of the R&D sector as consisting of individual small competitive firms, each with
the production function

flow of new blueprints = θAt`A,t,

where `A,t is the firm’s labor input on date t and At is the economy’s stock of exisiting
blueprints. The individual firm takes {At} to be exogenous to its decisions.
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Thus, the demand for a capital good is2

Kj =

(
α

pj

) 1
1−α

LY .

What does this imply for producers of the intermediate capital goods?
The (intertemporal) profits of intermediate producer j are

Πj =
pjKj

1 + r
−Kj =

αKα
j L

1−α
Y

1 + r
−Kj.

Maximizing Πj with respect to Kj yields:

α2Kα−1
j L1−αY

1 + r
− 1 = 0

or

K̄ =

(
α2

1 + r

) 1
1−α

L̄Y

(where the j subscript has been dropped, as all capital goods are symmetric).
Substituting this equation into eq. (2) yields the (constant) relative price of
a (generic) intermediate capital good:

p̄ = αK̄α−1L̄1−αY

= α

[(
α2

1 + r

) 1
1−α

L̄Y

]α−1
L̄1−αY

=
1 + r

α
.

For a constant elasticity demand function, a standard result is that a
monopolist’s price is a constant markup over cost.3 Here we see that

Price
Cost

=
p̄

1 + r
=

1

α
=

1
1−α
1

1−α − 1
.

The cost of production is 1 on date t− 1, and the price obtained (also from
the perspective of date t− 1) is p̄/(1 + r).

2We also see that (1− α)
∑At

j=1K
α
j L

−α
Y = w.

3If the price elasticity of demand is η, the markup is η/(η − 1), which goes to 1 as
η →∞. In the present model, η = 1/ (1− α).
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Given all this, what is the profit that a capital-good producer earns? We
need to know this because the requirement that the stream of profits covers
sunk cost is what ties the model down. Substitution yields:

Π̄ =
p̄K̄

1 + r
− K̄ =

(
p̄

1 + r
− 1

)(
α2

1 + r

) 1
1−α

L̄Y

=

(
1− α
α

)(
α2

1 + r

) 1
1−α

L̄Y . (3)

There is free entry into producing intermediate goods, so the price of a blue-
print must equal the present discounted value of Π̄ above, or

p̄A =
∞∑
t=0

Π̄

(1 + r)t
=

1 + r

r
Π̄

=
1 + r

r

(
1− α
α

)(
α2

1 + r

) 1
1−α

L̄Y (4)

An important point: if we did not have monopoly in the capital-producing
sector, there would be no stream of monopoly profits to cover the sunk cost of
blueprints, and so blueprints would never be purchased. In the market setting
we have assumed, monopoly —and some degree of monopoly ineffi ciency —is
necessary to sustain positive growth.

Equilibrium Growth Rate

Equilibrium growth in the number of capital goods is given by

g =
At+1 − At

At
= θL̄A.

Production of each specific capital good will remain constant at K̄.
What ties down the equilibrium allocation of labor, and hence g, is the

preceding eq. (4) for p̄A. Suppose there are too many workers in final goods
production (relative to the equilibrium) because workers are paid more in
final goods than in R&D. Then the demand for capital (to equip those work-
ers) will be high, raising the profits of intermediate producers and causing
them to bid up the price of blueprints p̄A. But that development, in turn will
raise the wages paid in the R&D sector, drawing workers out of final goods.
The process will continue until wages in the two sectors are equal.
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We formalize the requirement that workers have the same marginal value
product in both sectors by requiring that

MVPL in R&D = p̄AθA = (1− α)L−αY

A∑
j=1

K̄α = (1− α)AK̄αL−αY = w.

The solution is

L̄Y =

[
(1− α)

p̄Aθ

] 1
α

K̄

=

[
r(1− α)

(1 + r)Π̄θ

] 1
α

K̄

=

 r(1− α)

(1 + r)
(
1−α
α

) (
α2

1+r

) 1
1−α L̄Y θ

 1
α (

α2

1 + r

) 1
1−α

L̄Y ⇒

1 =

[
αr

(1 + r)L̄Y θ

] 1−α
α
(

α2

1 + r

)− 1−α
α

⇒

1 =

[
αr

(1 + r)L̄Y θ

](
α2

1 + r

)−1
⇒

L̄Y =
r

αθ
.

This is consistent, by the way, with the assumption we made that L̄Y is
constant. We can now also find the long-run rate of growth, which is

ḡ = θL̄A = θ(L− L̄Y ) = θL− r

α
. (5)

Notice that there is a “scale effect”here: a bigger work force implies more
innovation and hence faster growth. Higher interest rates retard growth —
though we have yet to solve for the equilibrium rate of interest r.
Let’s do so next. If the lifetime utility function of the representative

consumer is

U0 =

∞∑
t=0

βt
C
1− 1

σ
t

1− 1
σ

,

then the intertemporal Euler equation is

C
−1/σ
t = β(1 + r)C

−1/σ
t+1 .
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In balanced-growth equilibrium, consumption, like productivity, grows at the
(gross) rate 1 + g, so

1 + g =
Ct+1
Ct

= (1 + r)σβσ,

which tells us the interest rate is

r =
(1 + g)

1
σ

β
− 1.

Now combine this solution with eq. (5),

ḡ = θL− 1

α

[
(1 + ḡ)

1
σ

β
− 1

]
,

to infer the equilibrium rate of growth as the solution to

αβḡ + (1 + ḡ)
1
σ = β (1 + αθL) .

The solution is illustrated for an arbitrary value of σ by the intersection of
the two schedules in figure 7.14 of the Obstfeld-Rogoff book. For example,
when σ = 1, we can solve directly and one finds that

ḡ =
αβθL− (1− β)

1 + αβ
.

Growth is higher for higher L, α, β, σ, and θ. (Why?) One also finds that

r̄ =
α (1 + θL− β)

1 + αβ
.

Government policy can certainly affect the economic growth rate in this
model. For example, suppose the government imposes a fixed fee τ that
new firms have to pay for a license to enter the capital-goods industry. This
will increase the sunk cost of entry into the production of new capital goods.
The break-even condition, based on eqs. (3) and (4), now becomes

p̄A + τ =
1 + r

r

(
1− α
α

)(
α2

1 + r

) 1
1−α

L̄Y .

Intuitively, as τ rises from 0, p̄A will fall and L̄Y , will rise. But with L̄A =

L− L̄Y therefore lower, the pace of productivity growth will be lower as well.
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Equilibrium versus Optimal Growth

Due to the presence of monopoly in the system, the equilibrium alloca-
tion is not Pareto effi cient. Unless there are monopoly profits, producers
of capital goods cannot cover their sunk costs, so there is no demand for
blueprints, no innovation, and no growth. (Indeed, growth can never even
get started.) A second source of ineffi ciency is the externality in the produc-
tion of blueprints. An omnipotent central planner, however, could achieve a
superior allocation by fiat: researchers would be ordered to produce the opti-
mal flow of blueprints, capital producers to use them to provide the socially
optimal level of each capital good. Growth would not simply be maximized
in the command allocation, however, because that would require too great
a sacrifice of consumption. Instead, there is an optimal trade-off between
consumption and R&D. For example, in the case σ = 1, the planner would
use the Lagrangian

L =
∞∑
t=0

βt
{

log
[
AtK

α
t

(
L− LA,t

)1−α − At+1Kt+1

]
− λt (At+1 − At − θAtLA,t)

}
.

It turns out that the optimal growth rate is

ḡ∗ = βθL− (1− β) > ḡ =
αβθL− (1− β)

1 + αβ
.

If the government subsidizes capital producers to allow them to produce
profitably at social marginal cost, we get a growth rate of

ḡsubsidy =
βθL− (1− β)

1 + β
< ḡ∗.

This exceeds the free-market growth rate because the monopoly distortion
has been fixed, but falls short of the optimal growth rate because there is no
subsidy to make the R&D sector internalize the knowledge externality.

Kremer’s (1993) Paper

In a well-known paper, Michael Kremer examined the corollary of the
preceding type of model that growth is higher when population is higher.
He takes the position that knowledge diffuses across borders, so that the
appropriate object of analysis is global population.
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Technology growth in Kremer’s setup is

At+1 − At = θAtLt

where L is the global population/workforce. Here, people can have ideas
even while producing final consumption goods. In the presence of some fixed
factor such as land, output is given by

Yt = AtL
1−α
t .

Population growth is endogenous in Kremer’s model and given by a
Malthusian assumption: population instantaneously rises to the point where
per capita output/consumption just equals the minimal level that sustains
life. Let us be a bit more generous and allow the minimal living standard to
be higher, and to rise over time in a way that (crudely) reflect technology

Cmin
√
At =

Yt
Lt
.

Combining the last two equations yields

At = (CminLαt )2 .

Substituting into At+1 − At = θAtLt leads to

L2αt+1 − L2αt = θL1+2αt ,

or
Lt+1
Lt

= (1 + θL)
1
2α .

Population growth, according to this relation, should accelerate over time.
Kremer finds support for this prediction on data from 1 million B.C. through
1990. He also finds that between the disappearance of land bridges between
the continents and about 1500 (when the Age of Exploration began), the
larger continents had faster population growth. Assuming initial populations
were proportional to surface area, this prediction too confirms the theory.
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Economics 202A
Problem Set #4

1. An endogenous growth model based on human capital. Consider an economy
with a �xed labor force. Output per worker is given by

y = Ak�(uh)1��

where k is physical capital (per worker), h is human capital (per worker), and
u 2 [0; 1] is the fraction of the human capital stock allocated to production of
output. The rest of the human capital is used to produce new human capital,
which depreciates at rate �:

_h = B(1� u)h� �h:

Here, A and B are constant. The stocks k and h are predetermined state
variables as, therefore, is their ratio,

! � k=h:

The representative household maximizesZ 1

0

v[c(t)]e��tdt

subject to the preceding two equations and

_k = y � c� �k;

where v(c) = (1���1)c1���1 and � is the intertemporal substitution elasticity.
(a) Show via the Maximum Principle that the intertemporal Euler equation

for the household�s consumption is

_c

c
= �

h
�Au1��!�(1��) � � � �

i
:

(b) A second control variable in this optimization problem is u. De�ne
� � c=k: Show that the Euler equation for u has the form

_u

u
= ��+Bu+B

�
1� �
�

�
:

(c) De�ne z � Au1��!�(1��): Use the _c=c and _k equations above to con-
clude:

_�

�
= (�� � 1)z + �� [�� + (� � 1)�] :

1

*



(d) Recalling that ! = k=h; show that

_!

!
= z � ��B(1� u):

(e) Use this last equation and the equation for _u=u, together with the de�-
nition of z, to derive:

_z

z
= (1� �)

�
B

�
� z

�
:

(f) Suppose we considered the di¤erential equation system consisting of the
preceding equations of motion for the three variables z, �, and u. This (self-
contained) system is enough to describe the economy. To see why, note that, in
e¤ect, the system is allowing us to track �; u; and ! = u(A=z)1=(1��): But at
any time, h and k are given by past investment and education decisions, and so
! = k=h is also a predetermined state variable. Thus, from the model-implied
initial value of �(0) = c(0)=k(0) we can infer c(0), along with u(0); and thereby
track c; u; h; and k.
In a steady state, there is a constant fraction of labor in manufacturing

(u), a constant ratio of consumption to capital (c=k); and a constant ratio of
physical to human capital (!). Find the steady state values �z; ��; and �u from
the preceding di¤erential equations [and notice that �! = �u(A=�z)1=(1��)].
(g) Because y, c, k, and h all rise together over time, we have endogenous

growth. Using the consumption Euler equation calculate the steady state growth
rate of these variables. What is the intuition behind the solution? [Hint: Think
back to the Solow model.]
(h) Linearize the system in z, �, and u around the steady state of part (f),

and calculate its characteristic roots, showing that one is negative and two are
positive. Is this what you expected? Why or why not?
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*This exercise is based on M. Obstfeld, "Foreign Resource Inflows, Saving,
and Growth," in K. Schmidt-Hebbel and Luis Serven (eds.), The Economics
of Saving and Growth, Cambridge University Press,1999.
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