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I. Introduction

The assumption that economic activity takes place

continuously is a convenient abstraction in many applications.

In others, such as the study of financial-market equilibrium, the

assumption of continuous trading corresponds closely to reality.

Regardless of motivation, continuous-time modeling allows

application of a powerful mathematical tool, the theory of

optimal dynamic control.

The basic idea of optimal control theory is easy to grasp--

indeed it follows from elementary principles similar to those

that underlie standard static optimization problems. The purpose

of these notes is twofold. First, I present intuitive

derivations of the first-order necessary conditions that

characterize the solutions of basic continuous-time optimization

problems. Second, I show why very similar conditions apply in

1deterministic and stochastic environments alike.

A simple unified treatment of continuous-time deterministic

and stochastic optimization requires some restrictions on the

form that economic uncertainty takes. The stochastic models I

discuss below will assume that uncertainty evolves continuously

^according to a type of process known as an Ito (or Gaussian

------------------------------------------------------------------------------------------------------------------------------------------------------------
1When the optimization is done over a finite time horizon, the
usual second-order sufficient conditions generalize immediately.
(These second-order conditions will be valid in all problems
examined here.) When the horizon is infinite, however, some
additional "terminal" conditions are needed to ensure optimality.
I make only passing reference to these conditions below, even
though I always assume (for simplicity) that horizons are
infinite. Detailed treatment of such technical questions can be
found in some of the later references.
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diffusion) process. Once mainly the province of finance

^theorists, Ito processes have recently been applied to

interesting and otherwise intractable problems in other areas of

economics, for example, exchange-rate dynamics, the theory of the

firm, and endogenous growth theory. Below, I therefore include a

brief and heuristic introduction to continuous-time stochastic

processes, including the one fundamental tool needed for this

^type of analysis, Ito’s chain rule for stochastic differentials.

^Don’t be intimidated: the intuition behind Ito’s Lemma is not

hard to grasp, and the mileage one gets out of it thereafter

truly is amazing.

II. Deterministic Optimization in Continuous Time

The basic problem to be examined takes the form: Maximize

8

i ------dt(1) 2 e U[c(t),k(t)]dt
j
0

subject to

Q(2) k(t) = G[c(t),k(t)], k(0) given,

where U(c,k) is a strictly concave function and G(c,k) is

concave. In practice there may be some additional inequality

constraints on c and/or k; for example, if c stands for

consumption, c must be nonnegative. While I will not deal in any

detail with such constraints, they are straightforward to
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2incorporate. In general, c and k can be vectors, but I will

concentrate on the notationally simpler scalar case. I call c

the control variable for the optimization problem and k the state

variable. You should think of the control variable as a flow--

for example, consumption per unit time--and the state variable as

a stock--for example, the stock of capital, measured in units of

consumption.

The problem set out above has a special structure that we

can exploit in describing a solution. In the above problem,

planning starts at time t = 0. Since no exogenous variables

enter (1) or (2), the maximized value of (1) depends only on

k(0), the predetermined initial value of the state variable. In

other words, the problem is stationary , i.e., it does not change

3in form with the passage of time. Let’s denote this maximized

value by J[k(0)], and call J(k) the value function for the

8problem. If {c*(t)} stands for the associated optimal path of
t=0

8 4the control and {k*(t)} for that of the state, then by
t=0

definition,

------------------------------------------------------------------------------------------------------------------------------------------------------------
2The best reference work on economic applications of optimal
control is still Kenneth J. Arrow and Mordecai Kurz, Public
Investment, the Rate of Return, and Optimal Fiscal Policy
(Baltimore: Johns Hopkins University Press, 1970).
3Nonstationary problems often can be handled by methods
analogous to those discussed below, but they require additional
notation to keep track of the exogenous factors that are
changing.
4According to (2), these are related by

t

ik*(t) = 2 G[c*(s),k*(s)]ds + k(0).
j
0
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8

i ------dtJ[k(0)] = 2 e U[c*(t),k*(t)]dt.
j
0

The nice structure of this problem relates to the following

property. Suppose that the optimal plan has been followed until

a time T > 0, so that k(T) is equal to the value k*(T) given in

the last footnote. Imagine a new decision maker who maximizes

the discounted flow of utility from time t = T onward,

8

i ------d(t ------T)(3) 2 e U[c(t),k(t)]dt,
j
T

subject to (2), but with the intial value of k given by k(T) =

k*(T). Then the optimal program determined by this new decision

maker will coincide with the continuation, from time T onward, of

the optimal program determined at time 0, given k(0) . You should

construct a proof of this fundamental result, which is intimately

related to the notion of "dynamic consistency."

You should also convince yourself of a key implication

of this result, that

T

i ------dt ------dT(4) J[k(0)] = 2 e U[c*(t),k*(t)]dt + e J[k*(T)],
j
0

where J[k*(T)] denotes the maximized value of (3) given that k(T)

= k*(T) and (2) is respected. Equation (4) implies that we can

think of our original, t = 0, problem as the finite-horizon

problem of maximizing
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T

i ------dt ------dT
e U[c(t),k(t)]dt + e J[k(T)]

j
0

subject to the constraint that (2) holds for 0 < t < T. Of

course, in practice it may not be so easy to determine the

correct functional form for J(k), as we shall see below!

Nonetheless, this way of formulating our problem--which is

known as Bellman’s principle of dynamic programming --leads

directly to a characterization of the optimum. Because this

characterization is derived most conveniently by starting in

discrete time, I first set up a discrete-time analogue of our

basic maximization problem and then proceed to the limit of

continuous time.

Let’s imagine that time is carved up into discrete intervals

of length h. A decision on the control variable c, which is a

flow, sets c at some fixed level per unit time over an entire

period of duration h. Furthemore, we assume that changes in k,

rather than accruing continuously with time, are "credited" only

at the very end of a period, like monthly interest on a bank

account. We thus consider the problem: Maximize

8

s ------dth(5) e U[c(t),k(t)]h
t

t=0

subject to

5



(6) k(t+h) ------ k(t) = hG[c(t),k(t)], k(0) given.

Above, c(t) is the fixed rate of consumption over period t while

k(t) is the given level of k that prevails from the very end of

period t ------ 1 until the very end of t. In (5) [resp. (6)] I have

multiplied U(c,k) [resp. G(c,k)] by h because the cumulative flow

of utility [resp. change in k] over a period is the product of a

fixed instantaneous rate of flow [resp. rate of change] and the

period’s length.

Bellman’s principle provides a simple approach to the

preceding problem. It states that the problem’s value function is

given by

( )
------dh(7) J[k(t)] = max {U[c(t),k(t)]h + e J[k(t+h)] },

c ( t ) 9 0

subject to (6), for any initial k(t). It implies, in particular,

that optimal c*(t) must be chosen to maximize the term in braces.

By taking functional relationship (7) to the limit as h L 0, we

5will find a way to characterize the continuous-time optimum.

We will make four changes in (7) to get it into useful form.

First, subtract J[k(t)] from both sides. Second, impose the

------------------------------------------------------------------------------------------------------------------------------------------------------------
5All of this presupposes that a well-defined value function
exists --something which in general requires justification. (See
the extended example in this section for a concrete case.) I
have also not proven that the value function, when it does exist,
is differentiable . We know that it will be for the type of
problem under study here, so I’ll feel free to use the value
function’s first derivative whenever I need it below. With
somewhat less justification, I’ll also use its second and third
derivatives.
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constraint (6) by substituting for k(t+h), k(t) + hG[c(t),k(t)].

------dhThird, replace e by its power-series representation, 1 ------ dh +

2 2 3 3( d h )/2 ------ ( d h )/6 + .... Finally, divide the whole thing by

h. The result is

& 2(8) 0 = max U(c,k) ------ [ d ------ ( d h/2) + ...]J[k + hG(c,k)]
7

c

*+ {J[k + hG(c,k)] ------ J(k)}/h ,
8

where implicitly all variables are dated t. Notice that

J[k + hG(c,k)] ------ J(k) {J[k + hG(c,k)] ------ J(k)}G(c,k)
------------------------------------------------------------------------------------------------------------------------------ = ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.

h G(c,k)h

It follows that as h L 0, the left-hand side above approaches

J’(k)G(c,k). Accordingly, we have proved the following

PROPOSITION II.1. At each moment, the control c* optimal

for maximizing (1) subject to (2) satisfies the Bellman

equation

(9) 0 = U(c*,k) + J ’(k)G(c*,k) ------ dJ(k)
( )

= max {U(c,k) + J ’(k)G(c,k) ------ dJ(k) }.
c 9 0

This is a very simple and elegant formula. What is its

interpretation? As an intermediate step in interpreting (9),

define the Hamiltonian for this maximization problem as
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(10) H(c,k) _ U(c,k) + J ’(k)G(c,k).

In this model, the intertemporal tradeoff involves a choice

between higher current c and higher future k. If c is

consumption and k wealth, for example, the model is one in which

the utility from consuming now must continuously be traded off

against the utility value of savings. The Hamiltonian H(c,k) can

be thought of as a measure of the flow value, in current utility

terms, of the consumption-savings combination implied by the

consumption choice c, given the predetermined value of k. The

Hamiltonian solves the problem of "pricing" saving in terms of

Qcurrent utility by multiplying the flow of saving, G(c,k) = k, by

J’(k), the effect of an increment to wealth on total lifetime

utility. A corollary of this observation is that J ’(k) has a

natural interpretation as the shadow price (or marginal current

utility) of wealth. More generally, leaving our particular

example aside, J ’(k) is the shadow price one should associate

with the state variable k.

This brings us back to the Bellman equation, equation (9).

Let c* be the value of c that maximizes H(c,k), given k, which is

arbitrarily predetermined and therefore might not have been

6chosen optimally. Then (9) states that

(11) H(c*,k) = max { H(c,k)} = dJ(k).
c

------------------------------------------------------------------------------------------------------------------------------------------------------------
6It is important to understand clearly that at a given point in
time t, k(t) is not an object of choice (which is why we call it
a state variable). Variable c(t) can be chosen freely at time t
(which is why it is called a control variable), but its level
influences the change in k(t) over the next infinitesimal time
interval, k(t + dt) ------ k(t), not the current value k(t).
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In words, the maximized Hamiltonian is a fraction d of an

optimal plan’s total lifetime value. Equivalently, the

instantaneous value flow from following an optimal plan divided

by the plan’s total value--i.e., the plan’s rate of return--must

equal the rate of time preference, d. Notice that if we were to

measure the current payout of the plan by U(c*,k) alone, we would

err by not taking proper account of the value of the current

increase in k. This would be like leaving investment out of our

measure of GNP! The Hamiltonian solves this accounting problem by

valuing the increment to k using the shadow price J ’(k).

To understood the implications of (9) for optimal

consumption we must go ahead and perform the maximization that it

specifies (which amounts to maximizing the Hamiltonian). As a

by-product, we obtain the Pontryagin necessary conditions for

optimal control.

7Maximizing the term in braces in (9) over c, we get

(12) U (c*,k) = ------G (c*,k)J ’(k).c c

The reason this condition is necessary is easy to grasp. At each

moment the decision maker can decide to "consume" a bit more, but

at some cost in terms of the value of current "savings." A unit

of additional consumption yields a marginal payoff of U (c*,k), c

but at the same time, savings change by G (c*,k). The utilityc

------------------------------------------------------------------------------------------------------------------------------------------------------------

7I assume interior solutions throughout.
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value of a marginal fall in savings thus is ------G (c*,k)J ’(k); andc

if the planner is indeed at an optimum, it must be that this

marginal cost just equals the marginal current utility benefit

from higher consumption. In other words, unless (12) holds,

there will be an incentive to change c from c*, meaning that c*

cannot be optimal.

Let’s get some further insight by exploiting again

the recursive structure of the problem. It is easy to see from

(12) that for any date t the optimal level of the control,

c*(t), depends only on the inherited state k(t) (regardless of

whether k(t) was chosen optimally in the past). Let’s

write this functional relationship between optimal c and k as c*

= c(k), and assume that c(k) is differentiable. (For

example, if c is consumption and k total wealth, c(k) will

be the household’s consumption function.) Functions like c(k)

will be called optimal policy functions , or more simply, policy

functions . Because c(k) is defined as the solution to (9), it

automatically satisfies

0 = U[c(k),k] + J ’(k)G[c(k),k] ------ dJ(k).

Equation (12) informs us as to the optimal relation between c and

k at a point in time. To learn about the implied optimal

behavior of consumption over time, let’s differentiate the

preceding equation with respect to k:
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0 = [U (c*,k) + J ’(k)G (c*,k)]c ’(k) + U (c*,k)c c k

+ [G (c*,k) ------ d]J ’(k) + J "(k)G(c*,k).k

The expression above, far from being a hopeless quagmire, is

actually just what we’re looking for. Notice first that the

left-hand term multiplying c ’(k) drops out entirely thanks to

(12): another example of the envelope theorem. This leaves us

with the rest,

(13) U (c*,k) + J ’(k)[G (c*,k) ------ d] + J "(k)G(c*,k) = 0.k k

Even the preceding simplified expression probably isn’t totally

reassuring. Do not despair, however. A familiar economic

interpretation is again fortunately available.

We saw earlier that J ’(k) could be usefully thought of as

the shadow price of the state variable k. If we think of k as an

asset stock (capital, foreign bonds, whatever), this shadow price

corresponds to an asset price. Furthermore, we know that under

perfect foresight, asset prices adjust so as to equate the

asset’s total instantaneous rate of return to some required or

benchmark rate of return, which in the present context can only

be the time-preference rate, d. As an aid to clear thinking,

let’s introduce a new variable, l, to represent the shadow price

J’(k) of the asset k:

l _ J’(k).
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Our next step will be to rewrite (13) in terms of l. The

key observation allowing us to do this concerns the last term on

the right-hand side of (13), J "(k)G(c*,k). The chain rule of

calculus implies that

dJ’(k) dk d l dk d l QJ"(k)G(c*,k) = ----------------------------------- * ------------ = ------------ * ------------ = ------------ = l;
dk dt dk dt dt

and with this fact in hand, it is only a matter of substitution

to express (13) in the form

QU + lG + lk k
(14) ---------------------------------------------------------------------- = d.

l

This is just the asset-pricing equation promised in the

last paragraph.

Can you see why this last assertion is true? To understand

it, let’s decompose the total return to holding a unit of stock k

into "dividends" and "capital gains." The "dividend" is the sum

of two parts, the direct effect of an extra unit of k on utility,

U , and its effect on the rate of increase of k, lG . (We mustk k

multiply G by the shadow price l in order to express thek
Qphysical effect of k on k in the same terms a s U , that is, ink

terms of utility.) The "capital gain" is just the increase in

Qthe price of k, l. The sum of dividend and capital gain, divided

by the asset price l, is just the rate of return on k, which, by

12



(14) must equal d along an optimal path.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Example

Let’s step back for a moment from this abstract setting to

consolidate what we’ve learned through an example. Consider the

8 ------dtstandard problem of a consumer who maximizes i e U[c(t)]dt
0

Qsubject t o k = f(k) ------ c (where c is consumption, k capital, and

f(k) the production function). Now U = 0, G(c,k) = f(k) ------ c, Gk c

= ------1, and G = f ’(k). In this setting, (14) becomes thek

statement that the rate of time preference should equal the

marginal product of capital plus the rate of accrual of utility

capital gains,

Q
l

d = f ’(k) + ------.
l

Condition (12) becomes U ’(c) = l. Since this last equality

Q Qimplies that l = U"(c)c, we can express the optimal dynamics of c

and k as a nonlinear differential-equation system:

U’(c) q eQ Q(15) c = ------ -----------------------------2f ’(k) ------ d2, k = f(k) ------ c.
U"(c) z c

You can see the phase diagram for this system in figure 1.

(Be sure you can derive it yourself! The diagram assumes that

lim f ’(k) = 0, so that a steady-state capital stock exists.)
kL8

The diagram makes clear that, given k, any positive initial c
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initiates a path along which the two preceding differential

equations for c and k are respected. But not all of these paths

are optimal, since the differential equations specify conditions

that are merely necessary, but not sufficient, for optimality.

Indeed, only one path will be optimal in general: we can

write the associated policy function as as c* = c(k) (it is

graphed in figure 1). For given k, paths with initial

consumption levels exceeding c(k) imply that k becomes negative

after a finite time interval. Since a negative capital stock is

nonsensical, such paths are not even feasible, let alone optimal.

Paths with initial consumption levels below c(k) imply that k

gets to be too large, in the sense that the individual could

raise lifetime utility by eating some capital and never replacing

it. These "overaccumulation" paths violate a sort of terminal

condition stating that the present value of the capital stock

should converge to zero along an optimal path. I shall not take

the time to discuss such terminal conditions here.

If we take

1 ------(1/ e)c ------ 1
U(c) = ----------------------------------------------------------------------- , f(k) = rk,

1 ------ (1/ e)

where e and r are positive constants. we can actually find

an algebraic formula for the policy function c(k).

Let’s conjecture that optimal consumption is proportional to

wealth, that is, that c(k) = hk for some constant h to be

14



determined. If this conjecture is right, the capital stock k

Qwill follow k = (r ------ h)k, or, equivalently,

Qk
------ = r ------ h.
k

This expression gives us the key clue for finding h. If c =

hk, as we’ve guessed, then also

Qc
------ = r ------ h.
c

Qc
But necessary condition (15) requires that ------ = e(r ------ d),

c

which contradicts the last equation unless

(16) h = (1 ------ e)r + ed.

Thus, c(k) = [(1 ------ e)r + ed]k is the optimal policy function. In

the case of log utility ( e = 1), we simply have h = d. We get

the same simple result if it so happens that r and d are equal.

Equation (16) has a nice interpretation. In Milton

Friedman’s permanent-income model, where d = r, people consume

the annuity value of wealth, so that h = r = d. This rule

results in a level consumption path. When d $ r, however, the

optimal consumption path will be tilted, with consumption rising

over time if r > d and falling over time if r < d. By writing

15



(16) as

h = r ------ e(r ------ d)

we can see these two effects at work. Why is the deviation from

the Friedman permanent-income path proportional to e? Recall

that e, the elasticity of intertemporal substitution, measures an

individual’s willingness to substitute consumption today for

consumption in the future. If e is high and r > d, for example,

people will be quite willing to forgo present consumption to take

advantage of the relatively high rate of return to saving; and

the larger is e, certeris paribus , the lower will be h. Alert

readers will have noticed a major problem with all this. If r >

d and e is sufficiently large, h, and hence "optimal"

consumption, will be negative . How can this be? Where has our

analysis gone wrong?

The answer is that when h < 0, no optimum consumption plan

exists! After all, nothing we’ve done demonstrates existence:

our arguments merely indicate some properties that an optimum, if

one exists, will need to have.

No optimal consumption path exists when h < 0 for the

following reason. Because optimal consumption growth necessarily

Qsatisfies c/c = e(r ------ d), and e(r - d) > r in this case, optimal

consumption would have to grow at a rate exceeding the rate of

Qreturn on capital, r. Since capital growth obeys k/k = r ------

(c/k), however, and c > 0, the growth rate of capital, and hence
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that of output, is at most r. With consumption positive and

growing at 3 percent per year, say, but with capital growing at a

lower yearly rate, consumption would eventually grow to be

greater than total output--an impossibility in a closed economy.

So the proposed path for consumption is not feasible. This means

that no feasible path--other than the obviously suboptimal path

with c(t) = 0, for all t--satisfies the necessary conditions for

optimality. Hence, no feasible path is optimal: no optimal path

exists.

Let’s take our analysis a step further to see how the value

function J(k) looks. Observe first that at any time t, k(t) =

(r ------h)t e(r ------d)tk(0)e = k(0)e , where k(0) is the starting capital

stock and h is given by (16). Evidently, the value function at t

= 0 is just

8
q e

-1 ( )2 2 11 i ------dt 1 ------(1/ e)J[k(0)] = 2 2 { 2 e [ hk(t)] dt ------ ------ }1 ------ ------ j2 2 de 9 0
z c

0

8
q e

-1 ( )2 2 11 i ------dt e(r ------d)t 1 ------(1/ e)= 2 2 { 2 e [ hk(0)e ] dt ------ ------ }1 ------ ------ j2 2 de 9 0
z c

0

q e 1 ------(1/ e)-1 ( )2 2 [ hk(0)] 11= 2 2 {--------------------------------------------------------------------------------------------------------- ------ ------} .1 ------ ------
2 2 d ------ ( e ------ 1)(r ------ d) de 9 0
z c

So the value function J(k) has the same general form as the

utility function, but with k in place of c. This is not the last

17



time we’ll encounter this property. Alert readers will again

notice that to carry out the final step of the last calculation,

I had to assume that the integral in braces above is convergent,

that is, that d ------ ( e ------ 1)(r ------ d) > 0. Notice, however, that d ------

( e ------ 1)(r ------ d) = r ------ e(r ------ d) = h, so the calculation is valid

provided an optimal consumption program exists. If one doesn’t,

the value function clearly doesn’t exist either: we can’t specify

the maximized value of a function that doesn’t attain a maximum.

This counterexample should serve as a warning against blithely

assuming that all problems have well-defined solutions and value

functions.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Return now to the theoretical development. We have seen how

to solve continuous-time determinstic problems using Bellman’s

method of dynamic programming, which is based on the value

function J(k). We have also seen how to interpret the derivative

of the value function, J ’(k), as a sort of shadow asset price,

denoted by l. The last order of business is to show that we have

8actually proved a simple form of Pontryagin’s Maximum Principle :

PROPOSITION II.2. (Maximum Principle) Let c*(t) solve the

problem of maximizing (1) subject to (2). Then there exist

variables l(t) --called costate variables--such that the

Hamiltonian

------------------------------------------------------------------------------------------------------------------------------------------------------------
8First derived in L.S. Pontryagin et al., The Mathematical Theory
of Optimal Processes (New York and London: Interscience
Publishers, 1962).
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H[c,k(t), l(t ) ] _ U[c,k(t ) ] + l(t)G[c,k(t ) ]

is maximized at c = c*(t) given l(t) and k(t) ; that is,

dH
(17) ------------(c*,k, l) = U (c*,k) + lG (c*,k) = 0c cdc

at all times (assuming, as always, an interior

solution). Furthermore, the costate variable obeys the

differential equation

dHQ(18) l = ld ------ ------------(c*,k, l) = ld ------ [U (c*,k) + lG (c*,k)]k kdk

Q 9for k = G(c*,k) and k(0) given .

------------------------------------------------------------------------------------------------------------------------------------------------------------
9You should note that if we integrate differential-equation

(18), we get the general solution

8

dHi ------d(s ------t) dt
l(t) = 2e ------------[c*(s),k(s), l(s)]ds + Ae ,

j dk
t

where A is an arbitrary constant. [To check this claim, just

differentiate the foregoing expression with respect to t: if the
Qintegral in the expression is I(t), we find that l = dI ------ ( dH/ dk)

dt+ dAe = dl ------ ( dH/ dk).] I referred in the prior example to an

additional terminal condition requiring the present value of the

capital stock to converge to zero along an optimal path. Since

l(t) is the price of capital at time t, this terminal condition
------dtusually requires that lim e l(t) = 0, or that A = 0 in the

t L8
19



You can verify that if we identify the costate variable with

the derivative of the value function, J ’(k), the Pontryagin

necessary conditions are satisfied by our earlier dynamic-

programming solution. In particular, (17) coincides with (12)

and (18) coincides with (14). So we have shown, in a simple

stationary setting, why the Maximum Principle "works." The

principle is actually more broadly applicable than you might

guess from the foregoing discussion--it easily handles

nonstationary environments, side constraints, etc. And it has a

10stochastic analogue, to which I now turn.

------------------------------------------------------------------------------------------------------------------------------------------------------------

solution above. The particular solution that remains equates the

shadow price of a unit of capital to the discounted stream of its

shadow "marginal products," where the latter are measured by

partial derivatives of the flow of value, H, with respect to k.
10For more details and complications on the deterministic
Maximum Principle, see Arrow and Kurz, op. cit.
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III. Stochastic Optimization in Continuous Time

The optimization principles set forth above extend directly

to the stochastic case. The main difference is that to do

continuous-time analysis, we will have to think about the right

way to model and analyze uncertainty that evolves continuously

with time. To understand the elements of continuous-time

stochastic processes requires a bit of investment, but there is a

large payoff in terms of the analytic simplicity that results.

Let’s get our bearings by looking first at a discrete-time

11stochastic model. Imagine now that the decision maker

maximizes the von Neumann-Morgenstern expected-utility indicator

8

s ------dth(19) E e U[c(t),k(t)]h ,0 t
t=0

where E X is the expected value of random variable X conditionalt
12on all information available up to (and including) time t.

Maximization is to be carried out subject to the constraint that

(20) k(t+h) ------ k(t) = G[c(t),k(t), q(t+h),h], k(0) given,

------------------------------------------------------------------------------------------------------------------------------------------------------------
11An encyclopedic reference on discrete-time dynamic programming
and its applications in economics is Nancy L. Stokey and Robert
E. Lucas, Jr. (with Edward C. Prescott), Recursive Methods in
Economic Dynamics (Cambridge, Mass.: Harvard University Press,
1989). The volume pays special attention to the foundations of
stochastic models.
12Preferences less restrictive than those delimited by the von
Neumann-Morgenstern axioms have been proposed, and can be handled
by methods analogous to those sketched below.
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8where { q(t)} is a sequence of exogenous random variables with
t=- 8

a known joint distribution, and such that only realizations up to

and including q(t) are known at time t. For simplicity I will

assume that the q process is first-order Markov , that is, that

the joint distribution of { q(t+h), q(t+2h), ...} conditional on

{ q(t), q(t ------h), ...} depends only on q(t). For example, the AR(1)

process q(t) = rq(t ------h) + u(t), where u(t) is distributed

independently of past q’s, has this first-order Markov property.

Constraint (20) differs from its deterministic version, (6),

in that the time interval h appears as an argument of the

transition function, but not necessarily as a multiplicative

factor. Thus, (20) is somewhat more general than (6). The need

for this generality arises because q(t+h) is meant to be

"proportional" to h in a sense that will become clearer as we

proceed.

Criterion (19) reflects inherent uncertainty in the

realizations of c(t) and k(t) for t > 0. Unlike in the

deterministic case, the object of individual choice is not a

single path for the control variable c. Rather, it is a sequence

of contingency plans for c. Now it becomes really essential to

think in terms of a policy function mapping the "state" of the

program to the optimal level of the control variable. The

optimal policy function giving c*(t) will not be a function of

the state variable k(t) alone, as it was in the last section;

rather, it will depend on k(t) and q(t), because q(t) (thanks to

the first-order Markov assumption) is the piece of current
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information that helps forecast the future realizations q(t+h),

q(t+2h), etc. Since k(t) and q(t) evolve stochastically, writing

c*(t) = c[k(t); q(t)] makes it clear that from the perspective of

any time before t, c*(t) will be a random variable, albeit one

that depends in a very particular way on the realized values of

k(t) and q(t).

Bellman’s principle continues to apply, however. To

implement it, let us write the value function--again defined as

the maximized value of (19)--as J[k(0); q(0)]. Notice that q(0)

enters the value function for the same reason that q(t)

influences c*(t). If q is a positive shock to capital

productivity (for example), with q positively serially

correlated, then a higher current value of q leads us to forecast

higher q’s for the future. This higher expected path for q both

raises raises expected lifetime utility and influences the

optimal consumption choice.

In the present setting we write the Bellman equation as

( )
------dh(21) J[k(t); q(t)] = max {U[c(t),k(t)]h +e E J[k(t+h); q(t+h)] },

t
9 0

c(t)

where the maximization is done subject to (20). The rationale

for this equation basically is the same as before. The

8contingent rules for {c(s)} that maximize
s=t+1

8

s ------dshE e U[c(s),k(s)]h subject to (20), given k(t) and thet t
s=t
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optimal choice c*(t), will also maximize

8

s ------dshE e U[c(s),k(s)]h subject to (20), given the probabilityt t
s=t+1

distribution for k(t+h) induced by c*(t).

Equation (21) is the stochastic analogue of (7) for the case

of first-order Markovian uncertainty. The equation is

immediately useful for discrete-time analysis: just use (20) to

eliminate k(t+h) from (21) and differentiate away. But our

concern here is with continuous-time analysis. We would like to

proceed as before, letting the market interval h go to zero in

(21) and, hopefully, deriving some nice expression analogous to

(9). Alas, life is not so easy. If you try to take the route

just described, you will end up with an expression that looks

like the expected value of

J[k(t+h); q(t+h)] ------ J[k(t); q(t)]
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------.

h

This quotient need not, however, converge (as h L 0) to a well-

defined random variable. One way to appreciate the contrast

between the present setup and the usual setup of the calculus is

as follows. Because J[k(t); q(t)] is a random variable, a plot of

its realizations against time--a sample path --is unlikely to be

differentiable. Even after time is carved up into very small

intervals, the position of the sample path will change abruptly

from period to period as new realizations occur. Thus,

expressions like the quotient displayed above may have no well-
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defined limiting behavior as h L 0. To proceed further we need a

new mathematical theory that allows us to analyze infinitesimal

changes in random variables. The stochastic calculus is designed

to accomplish precisely this goal.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Stochastic Calculus

Let X(t) be a random variable whose change between periods t

2
------ 1 and t, DX(t) = X(t) ------ X(t ------ 1), has mean m and variance s .

To simplify matters I’ll assume that DX(t) is normally

distributed, although this is not at all necessary for

13the argument.

We are interested in the case where DX(t), the change in

random variable X over the period of length 1 between t ------ 1 and

t, can be viewed as a sum (or integral) of very small (in the

limit, infinitesimal) random changes. We would also like each of

these changes, no matter how small, to have a normal

distribution. Our method, as in the usual calculus, is to divide

the time interval [t ------ 1, t] into small segments. But we need to

be sure that no matter how finely we do the subdivision, DX(t),

2the sum of the smaller changes, remains N( m, s ).

To begin, carve up the interval [t ------ 1, t] into n disjoint

subintervals, each of length h = 1/n. For every i e {1,2,...,n},

------------------------------------------------------------------------------------------------------------------------------------------------------------
13For a simplified yet rigorous exposition of these matters,
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let n(i) be a N(0,1) random variable with En(i) n(j) = 0 for i $

j. Suppose that DX(t) can be written as

n
s 1/2(22) DX(t) = mh + sh n(i)
t

i=1

Then since nh = 1, (22) is consistent with our initial

2hypothesis that EDX(t) = m and VDX(t) = s . For example,

n n n
2 s s s 2 2VDX(t) = s En(i) n(j)/n = En(i) /n = s .
t t t
i=1 j=1 i=1

Equation (22) expresses the finite change DX(t) as the sum

1/2of tiny independent normal increments of the form mh + sh n. It

is customary to denote the limit of such an increment as h L 0 by

1/2
mdt + sdz, where for any instant t, dz( t) = lim h n( t).

hL0

When this limit is well-defined, we say that X(t) follows the

Gaussian diffusion process

(23) dX(t) = mdt + sdz(t),

which means, in notation that is suggestive but that I will

not attempt to define rigorously, that

t

iX(t) = X( t) + m(t ------t) + s2dz(s) = X( t) + m(t ------t) + s[z(t) ------z( t)]
j
t

14for all t < t.

------------------------------------------------------------------------------------------------------------------------------------------------------------
14Again, see Merton, op. cit. , for a more rigorous treatment. To
make all this more plausible, you may want to write (22) (for our
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Think of X(t) as following a continuous-time random walk

with a predictable rate of drift m and an instantaneous rate of

2variance (variance per unit of time) s . When s = 0, we are back

in the deterministic case and are therefore allowed to assert

that X(t) has time derivative m: dX(t)/dt = m. But when s > 0,

X(t) has sample paths that are differentiable nowhere. So we use

a notation, (23), that does not require us to "divide" random

differences by dt. Because we are looking at arbitrarily small

increments over arbitrarily small time intervals, however, the

sample paths of X(t) are continuous.

Now that we have a sense of what (23) means, I point out

that this process can be generalized while maintaining a

Markovian setup in which today’s X summarizes all information

useful for forecasting future X’s. For example, the process

(24) dX = m(X,t)dt + s(X,t)dz.

------------------------------------------------------------------------------------------------------------------------------------------------------------
earlier case with t = t ------ 1) as

n
s q------

DX(t) ------ m = n(i)/ en ,
t

i=1

where n = 1/h is the number of increments in [t ------ 1, t]. We know
from the central-limit theorem that as n L 8, the right-hand side
above is likely to approach a limiting normal distribution even
if the n(i)’s aren’t normal (so my assumptions above were
stronger than necessary). Obviously, also, X(t) ------ X(t ------ h) will

2be normally distributed with variance h s no matter how small h
is. But X(t) ------ X(t ------ h) divided by h therefore explodes as h L 0

2(its variance is s /h). This is why the sample paths of
diffusion processes are not differentiable in the usual sense.
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allows the drift and variability of dX to be functions of

the level of X(t) itself, which is known at time t, and of

time.

There is a further set of results we’ll need before tackling

^the one major theorem of stochastic analysis applied below, Ito’s

chain rule. We need to know the rules for multiplying stochastic

differentials. We’re familiar, from the usual differential

calculus, with the idea that quantities of order dt are

mimportant, whereas quantities of order dt , m > 1, are not. For

2example, in calculating the derivative of the function y , we

-1 2 2 2compute h times the limit of (y + h) ------ y = 2yh + h as h L 0.

2The derivative is simply 2y, because the term h goes to zero

even after division by h. The same principle will apply in

stochastic calculus. Terms of order greater than h are

2 2discarded. In particular dt = lim h will be set to zero,
hL8

just as always.

What about something like the product dzdt? Since this is

3/2the limit of h n as h L 8, it shrinks faster than h and

accordingly will be reckoned at zero:

(25) dzdt = 0.

2 2Finally, consider dz = lim h n . This is of order h, and thushL8

does not disappear as h gets very small. But the variance of

2 15this term can be shown to be 2h , which is zero asymptotically.

------------------------------------------------------------------------------------------------------------------------------------------------------------
2 215To prove this, note that because n is N(0,1), Vhn = E(h n ------
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2By Chebyshev’s inequality, h n thus converges in probability to

its expected value, h, as h L 0, and so we write

2(26) dz = dt.

^Let’s turn now to Ito’s famous lemma. Suppose that the

random variable X(t) follows a diffusion process such as (24).

^The basic idea of Ito’s Lemma is to help us compute the

stochastic differential of the random variable f[X(t)], where

f( Q) is a differentiable function. If s(X,t) _ 0, then the chain

rule of ordinary calculus gives us the answer: the change in f(X)

over an infinitesimal time interval is given by df(X) = f ’(X)dX =

f ’(X) m(X,t)dt. If s(X,t) # 0 but f( Q) is linear, say f(X) = aX

for some constant a, then the answer is also quite obvious: in

this special case, df(X) = f ’(X)dX = a m(X,t)dt + a s(X,t)dz.

Even if f( Q) is nonlinear, however, there is often a

simple answer to the question we’ve posed:

^Ito’s Lemma. Let X(t) follow a diffusion process, and let f: R L

R be twice continuously differentiable. The stochastic

differential of f(X) is

1 2(27) df(X) = f ’(X)dX + ------f "(X)dX .
2

------------------------------------------------------------------------------------------------------------------------------------------------------------
2 2 4 2 2 2 2 2 2 2h) = E(h n ------ 2h n + h ) = 3h ------ 2h + h = 2h .
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Comment. If X follows the diffusion process (24), then,

2using rules (25) and (26) to compute dX in (27), we get

2s(X,t)
(28) df(X) = [ m(x,t)f ’(X) + ----------------------------------- f "(X)]dt + s(X,t)f ’(X)dz.

2

You’ll notice that (28) differs from the "naive" chain rule only

in modifying the expected drift in f(X) by a term that depends on

the curvature of f( Q). If f "(X) > 0 so that f( Q) is strictly

convex, for example, (28) asserts that E df(X) = E f[X(t+dt)] ------
t t

f[X(t)] is greater than f ’(X) m(X,t)dt = f ’(X) E dX = f[ E X(t+dt)]
t t

------ f[X(t)]. But anyone who remembers Jensen’s Inequality knows

that E f[X(t+dt)] > f[ E X(t+dt)] for convex f( Q), and that the
t t

^opposite inequality holds for concave f( Q). So Ito’s Lemma

16should not come as a surprise.

------------------------------------------------------------------------------------------------------------------------------------------------------------
16In case you don’t remember Jensen’s Inequality, here’s a quick
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^ ^Motivation for Ito’s Lemma. The proof of Ito’s Lemma is quite

subtle, so a heuristic motivation of this key result will have to

17suffice. Once again I’ll rely on a limit argument. For an

18interval length h, Taylor’s theorem implies that

f[X(t+h)] ------ f[X(t)] = f ’[X(t)][X(t+h) ------ X(t)]

1 2+ ------f "{X(t) + x(h)[X(t+h) ------ X(t)]}[X(t+h) ------ X(t)] ,
2

where x(h) e [0,1]. It may look "obvious" to you that this

converges to (27) as h L 0. Beware. It turns out to be quite a

chore to ensure that the right-hand side of this expression is

well behaved as h L 0, largely because of the complicated

dependence of the term f "{X(t) + x(h)[X(t+h) ------ X(t)]} on h.

Fortunately, as h L 0, the randomness in this term does disappear

quickly enough that we can safely equate it to f "[X(t)] in the

limit. The result is (27). It should now be clear how one would

------------------------------------------------------------------------------------------------------------------------------------------------------------
sketch of a proof. Recall that a convex function has the
property that gf(X ) + (1 ------g)f(X ) > f[ gX + (1 ------g)X ] Ag e [0,1].

1 2 1 2

sIt is easy to extend this to the proposition that p f(X ) >
t i i

i

sf( p X ) for ( p ,..., p ) in the unit simplex. (Try it.) So for
t i i 1 n

i

finite discrete probability distributions we’re done. (Obviously
concave functions work the same way, with the inequalities
reversed.) Now consider the case in which the random variable X
has an arbitrary continuous density function p(X). We can

sapproximate Ef(X) by sums of the form f(X ) p(X )h, each of which
t i i

i

smust be at least as great as f[ X p(X )h] if we choose the
t i i

i

17For Taylor’s theorem with remainder, see any good calculus text.
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^motivate a multivariate version of Ito’s Lemma using the

multivariate Taylor expansion.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The preceding digression on stochastic calculus has equipped

us to answer the question raised at the outset: What is the

continuous-time analogue of (21), the stochastic Bellman

equation?

To make matters as simple as possible, in analogy with

section II’s time-stationary setup, I’ll assume that q(t+h)

= X(t+h) ------ X(t), where X(t) follows the simple diffusion

process (23), dX = rdt + sdz, for constant r and s. Under this

assumption E q(t+h) = rh always, so knowledge of q(t) gives us no
t

information about future values of q. Thus the value function

depends on the state variable k alone. Now (21) becomes

( )
------dh(29) J[k(t)] = max {U[c(t),k(t)]h + e E J[k(t+h)] }.

t
9 0

c(t)

Let’s carry on by adapting the last section’s strategy of

------dhsubtracting J[k(t)] from both sides of (21) and replacing e by

m1 ------ dh. (We now know we can safely ignore the terms in h for m

> 2.) The result is

)(
dE J[k(t+h)]h }.0 = max {U[c(t),k(t)]h + E J[k(t+h)] ------ J[k(t)] ------ tt 0c ( t ) 9

Now let h L 0. According to (20), dk = G(c,k,dX,dt), and I

assume that this transition equation defines a diffusion process
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^for k. Ito’s Lemma then tells us that

1 2(30) dJ(k) = J ’(k)dk + ------J"(k)dk ,
2

Thus as h L 0, E J[k(t+h)] ------ J[k(t)] L J’[k(t)] E dk(t) +
t t

1 2
------J"[k(t)] E dk(t) . Furthermore, as h L 0, E J[k(t+h)] L J[k(t)].

t t2

So we end up with the following:

PROPOSITION III.1. (Continuous-Time Stochastic Bellman Equation)

8 ------dtConsider the problem of maximizing E i e U(c,k)dt subject to a
0 0

diffusion process for k controlled by c, and given k(0) . At each

moment, the optimal control c* satisfies the Bellman equation

(31) 0 = U(c*,k)dt + J ’(k) E G(c*,k,dX,dt)
t

1 2+ ------J"(k) E G(c*,k,dX,dt) ------ dJ(k)dt
t2

( )1 2= max {U(c,k)dt + J ’(k) E dk + ------J"(k) E dk ------ dJ(k)dt }.
t t2c ( t ) 9 0

Equation (31) is to be compared with equation (9), given in

Proposition II.1. Indeed, the interpretation of Proposition

III.1 is quite similar to that of Proposition II.1.

Define the stochastic Hamiltonian [in analogy to (10)] as

2E dk E dkt 1 t
(32) H(c,k) _ U(c,k) + J ’(k) ---------------------- + ------J"(k) --------------------------.

dt 2 dt
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The Hamiltonian has the same interpretation as (10), but with a

stochastic twist. The effect of a given level of "savings" on

next period’s "capital stock" now is uncertain. Thus the

Hamiltonian measures the expected flow value, in current utility

terms, of the consumption-savings combination implied by the

consumption choice c, given the predetermined (and known) value

of k. The analogy will be clearer if you use (30) to write (32)

18as

E dJ(k)
H(c,k) = U(c,k) + t ,

----------------------------------------
dt

and if you use the ordinary chain rule to write the

Qdeterministic Hamiltonian (10) as U(c,k) + J ’(k)k = U(c,k) +

dJ(k)/dt.

The stochastic Bellman equation therefore implies the same

rule as in the deterministic case, but in an expected-value

sense. Once again, optimal consumption c* satisfies (11),

H(c*,k) = max { H(c,k)} = dJ(k).
c

Rather than proceeding exactly as in our deterministic

analysis, I will sacrifice generality for clarity and adopt a

specific (but widely used) functional form for the continuous-

------------------------------------------------------------------------------------------------------------------------------------------------------------
19The notation in (32) and in the next line below is common.

Since E dk, for example, is deterministic, ( E dk)/dt can be
t t

viewed as the expected rate of change in k. Since diffusion

processes aren’t differentiable, E (dk/dt) is in contrast a
t

nonsensical expression.
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time version of (20), dk = G(c,k,dX,dt). I will assume the

linear transition equation

(33) dk = kdX ------ cdt = (rk - c)dt + skdz

(since dX = rdt + sdz). What form does (31) now assume? To see

2this we have to calculate E dk and E dk . It is clear from (33)
t t

that E dk = (rk ------ c)dt. Invoking (25) and (26), and recalling
t

2 2 2 2 2 2 2that dt = 0, we see that dk = E dk = k dX ------ 2ckdXdt + c dt =
t

2 2
s k dt. We thus conclude that c* must solve

( )1 2 2(34) 0 = max {U(c,k) + J ’(k)(rk ------ c) + ------J"(k)k s ------ dJ(k) }.
2c ( t ) 9 0

In principle this equation is no harder to analyze than was

(9): the two are identical [if G(c,k) = rk ------ c] aside from the

^additional second derivative term in (34), due to Ito’s Lemma.

So we proceed as before, starting off by maximizing the

Hamiltonian.

Since k is predetermined and known at each moment, the

necessary condition for c* to maximize the right hand of (34) is

(35) U (c*,k) = J ’(k),c

which is the same as (12) because I’ve assumed here that G = ------1.c

We can also define the optimal policy function c* = c(k),

just as before. By definition c(k) satisfies the equation
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1 2 2(36) 0 = U[c(k),k] + J ’(k)[rk ------ c(k)] + ------J"(k)k s ------ dJ(k).
2

One would hope to understand better the implied dynamics of c

by differentiating with respect to the state variable. The

result is

2(37) U (c*,k) + J ’(k)(r ------ d) + J "(k)k s + J"(k)(rk ------ c*)k
1 2 2+ ------J’’’(k)k s = 0,
2

where I’ve already applied the envelope condition (35).

It is tempting to give up in the face of all these second

and third derivatives; but it is nonetheless possible to

interpret (37) in familiar economic terms. Let’s again define

the shadow price of k, l, by

l _ J’(k).

This shadow price is known at time t, but its change over the

interval from t to t + dt is stochastic. Equation (37) differs

from (13) only by taking this randomness into account; and by

writing (37) in terms of l, we can see precisely how this is

done.

^To do so we need two observations. First, Ito’s Lemma

discloses the stochastic differential of l to be

36



1 2 2(38) d l = dJ ’(k) = J "(k)(kdX ------ cdt) + ------J’’’(k)k s dt
2

(verify this), so that

1E dl 2 2(39) t = J"(k)(rk ------ c) + ------J’’’(k)k s .
--------------------- 2

dt

2Second, the term J "(k)k s in (37) can be expressed as

2 2(40) J "(k)k s = ------J’(k)R(k) s ,

where R(k) _ ------J"(k)k/J ’(k) should be interpreted as a coefficient

of relative risk aversion.

Using (39) and (40), rewrite (37) in terms of l = J’(k) as

E dl
t2U (c*,k) + l[r ------ R(k) s ------ d] + ---------------------,k dt

or, in analogy to (14), as

2 2U + l[r ------ R(k) s /2] + [( E dl)/dt ------ lR(k) s /2]k t
(41) ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- = d,

l

To compare (41) with (14), notice that under the linear

transition equation (33), r corresponds to the expected value of

G ; we adjust this expectation downward for risk by subtractingk
2the product of the risk-aversion coefficient and s /2. An
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identical risk adjustment is made to the expected "capital gains"

term, ( E dl)/dt. Otherwise, the equation is the same as (14),
t

and has a corresponding "efficient asset price" interpretation.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

Example

An individual maximizes the expected discounted utility of

8 ------dtconsumption, E i e U(c)dt, subject to a stochastic capital
0 0

accumulation constraint that looks like (33):

dk = rkdt + skdz ------ cdt, k(0) given.

What is the meaning of this savings constraint? Capital has a

mean marginal product of r, but its realized marginal product

fluctuates around r according to a white-noise process with

2instantaneous variance s . The flow utility function is

1 ------(1/ e)c ------ 1
U(c) = -----------------------------------------------------------------------,

1 ------ (1/ e)

as in the second part of the last section’s example.

To solve the problem I’ll make the same guess as before,

that the optimal consumption policy function is c(k) = hk for an

appropriate h. As will be shown below--and as was the case in a

deterministic setting--the value function J(k) is a linear

1 ------(1/ e)function of k , making the risk aversion coefficient R(k)
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defined after (40) a constant, R _ 1/ e. For now I will assume

this, leaving the justification until the end.

How can we compute h in the policy function c(k) = hk? The

argument parallels our earlier discussion of the nonstochastic

case, which you may wish to review at this point.

Start by thinking about the implications of the

postulated policy function for the dynamics of capital. If

c(k) = hk, then

dk = rkdt + skdz ------ c(k)dt = (r ------ h)kdt + skdz.

But as optimal c is proportional to k,

dc = (r ------ h)cdt + scdz.

Above we defined l as J ’(k); but first-order condition (35)

-1/ e ^implies that l = U’(c) = c . Application of Ito’s Lemma to l

-1/ e= c leads to

( ) ( )( )( )
2 2 2 22 22 21 - 1 ------(1/ e) 1 1 1 -2-(1/ e) 2dl = ------2 2c dc + 2 22 22 2c dc .------ ------ ------ 1 + ------
2 2 2 22 22 2e 2 e e
9 0 9 09 09 0

Because we’ve already established that E dc = (r ------ h)cdt and
t

2 2 2that dc = s c dt, we infer from the equation above that

E dl -(1/ e)
t c # &1*& 1 * 2$

----------------------- = -------------------------------- h ------ r + ------ 1 + ------ sdt e 3 7287 e 8 4
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But there is an alternative way of describing the dynamics

of l: equation (41) can be written here as

E dl
t 2 -1/ e 2

--------------------- = l[ d ------ (r ------ Rs )] = c [ d ------ (r ------ s / e)].
dt

So we have derived two potentially different equations

for ( E dl)/dt; clearly the two are mutually consistent if
t

and only if

( )q e
( )2 22 22 1 2 2 1[ d ------ (r ------ s / e)] = 2 22 1 & * 2 2,------ h ------ r + 2 2 1 + ------ s2 22 ------ 2e 2 7 8 22 2 e9 0 2z c

or, solving for h, if and only if

( e ------ 1) 2
h = r ------ e(r ------ d) + -----------------------------------------s .

2e

The implied consumption rule is similar to the one that arose in

the nonstochastic example analyzed earlier, but it corrects for

the unpredictable component of the return to capital. (Notice

that we again obtain h = d if e = 1.) The analogy with (16) will

be clearest if the rule is written as

1 2(42) h = (1 ------ e)(r ------ ------Rs ) + ed.
2

In (42), h appears as the weighted average of the time-
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preference rate and a risk-adjusted expected return on

investment.

Problems still arise if h < 0. In these cases an optimum

fails to exist, for reasons essentially the same as those

discussed in section II’s example.

As a final exercise let’s calculate the value function J(k)

and confirm the assumption about its form on which I’ve based my

analysis of the optimal consumption policy function. In the

^process we’ll learn some more about the importance of Ito’s

Lemma. One way to approach this task is to calculate the (random)

path for k under an optimal consumption plan, observe that the

optimal contingency rule for consumption is c = hk, and then use

this formula to compute the optimal (random) consumption path and

lifetime expected utility. Indeed, we took a very similar tack

in the deterministic case. So we start by asking what the

optimal transition equation for the capital stock, dk = (r ------

h)kdt + sdz, implies for the level of k . [Throughout the

following discussion, you should understand that h is as

specified by (42).]

Observe first that the optimal capital-stock

transition equation can be written as

dk/k = (r ------ h)dt + sdz.

A crucial warning. You might think that dk/k is the same thing

as dlog(k), as in the ordinary calculus. If this were true, we
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would conclude that the capital stock follows the stochastic

process

t

ilog[k(t)] = log[k(0)] + (r ------ h)t + s2dz(s),
j
0

or, equivalently, that

(r ------h)t + s[z(t) ------z(0)]k(t) = k(0)e .

^But this is incorrect. Ito ’s Lemma tells us that dlog(k) =

1 12 2(dk/k) ------ ------s dt = (r ------ h ------ ------s )dt + sdz. [The reason for this
2 2

divergence is Jensen’s Inequality--log( Q) is a strictly concave

function.] It follows that the formula for k(t) below is the

right one:

2(r ------h------s /2)t + s[z(t) ------z(0)](43) k(t) = k(0)e .

At an optimum, k(t) will be conditionally lognormally

distributed, with an expected growth rate of r ------ h: E k(t)/k(0) =
0

(r ------h)t 20e .

As a result of (43), the value function a t t = 0 is

------------------------------------------------------------------------------------------------------------------------------------------------------------
2 X20If X is a normal random variable with mean m and variance s , e

is said to be lognormally distributed. The key fact about
lognormals that is used repeatedly is that when X is normal,

2X m+s /2Ee = e .

For a proof, see any good statistics text.
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8
q e

-1 ( )2 2 11 i ------dt 1 ------(1/ e)J[k(0)] = 2 2 E { 2e [ hk(t)] dt ------ ------ }1 ------ ------ 0 j2 2 de 9 0
z c

0

8
q e

-1 ( 2 1 ------(1/ e) )2 2 11 i ------dt # (r ------h------s /2)t+ s[z(t) ------z(0)] $= 2 2 {2e E hk(0)e dt ------ ------ }1 ------ ------ j 03 42 2 de 9 0
z c

0

8
q e

-1 ( 1 ------(1/ e) 2 )2 2 q e 11 i ------dt [1 ------(1/ e)](r ------h------s /2 e)t= 2 2 {2hk(0) 2 2e e dt ------ ------}1 ------ ------ j2 2 z c de 9 0
z c

0

( )q e
2 1 ------(1/ e) 22 12-1 2 [ hk(0)] 1 2

= 21 ------ ------2 {------------------------------------------------------------------------------------------------------------------------------------------------------ ------ ------}.
2 2 d22 e2 2d ------ ( e ------ 1)(r ------ Rs /2 ------ d) 2

z c 9 0

You’ll recognize the final product above as the same formula

for J[k(0)] that we encountered on p. 16 above, with the sole

2amendment that the risk-adjusted expected return r ------ Rs /2

21replaces r everywhere [including in h; recall (42)]. Because

2
d ------ ( e ------ 1)(r ------ Rs /2 ------ d) = h, h > 0 ensures convergence of the

integral defining J(k). Finally, J(k) is a linear function of

1 ------(1/ e)k , as claimed earlier.

There is another, more direct way to find the value

------------------------------------------------------------------------------------------------------------------------------------------------------------
21To move from the second to the third equality above, I used the

fact that the normal random variable [1 ------ (1/ e)] s[z(t) ------ z(0] has
2 2mean zero and variance [1 ------ (1/ e)] s t conditional o n t = 0

information.
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function, one that also applies in the deterministic case. [Had

we known the value function in advance, we could have used (35)

to compute the consumption function without trial-and-error

guesses.] By (35), the optimal control must satisfy

------ec(k) = J ’(k) .

Thus by (34),

1 ------e[J ’(k)] 1------e 2 20 = ---------------------------------------------------------- + J’(k)[rk ------ J’(k) ] + ------J"(k)k s ------ dJ(k).
1 ------ (1/ e) 2

This is just an ordinary second-order differential equation which

in principle can be solved for the variable J(k). You may wish

to verify that the value function J(k) we derived above is indeed

2a solution. To do the nonstochastic case, simply set s = 0.

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

The similarities between this example and its deterministic

analogue are striking. They are not always so direct.

Nonetheless, it is noteworthy that for the linear state

transition equation considered above, there exists a stochastic

version of Pontryagin’s Maximum Principle. One could attack the

22problem in full generality, but as my goal here is the more

modest one of illustrating the basic idea, I will spare you this.

------------------------------------------------------------------------------------------------------------------------------------------------------------
22As does Jean-Michel Bismut, "Growth and the Optimal
Intertemporal Allocation of Risks," Journal of Economic Theory 10
(April 1975): 239-257.
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PROPOSITION III.2. (Stochastic Maximum Principle) Let

c*(t) solve the problem of maximizing

8

i ------d(s ------t)E 2e U[c(s),k(s)]ds0j
0

subject to the transition equation

dk(t) = rk(t)dt + sk(t)dz(t) - c(t)dt, k(0) given,

where z(t) is a standard Gaussian diffusion. Then there exist

costate variables l(t) such that if z(t) is the instantaneous

conditional covariance of l(t) and z(t) , the risk-adjusted

Hamiltonian

~
H[c,k(t), l(t ) , z(t)] _ U[c,k(t ) ] + l(t)[rk(t) ------ c] + z(t) sk(t)

is maximized at c = c*(t) given l(t), z(t), and k(t) ; that is,

~
dH

(44) ------------(c*,k, l, z) = U (c*,k) ------ l = 0cdc

at all times (assuming an interior solution). Furthermore,

the costate variable obeys the stochastic differential

equation

~
dH

(45) d l = lddt ------ ------------(c*,k, l, z)dt + zdz
dk

= lddt ------ [U (c*,k) + lr + zs]dt + zdzk
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for dk = rkdt ------ c*dt + skdz and k(0) given

To understand how this proposition follows from our

earlier discussion, observe first that because l will again

equal J ’(k), the instantaneous conditional covariance of l(t)

and z(t) can be seen from (25), (26), and (38) to be

(46) z = ( E dldz)/dt = J "(k) sk.
t

Thus, with reference to the definition (32) of the unadjusted

stochastic Hamiltonian, given here by

1 2 2
H(c,k) = U(c,k) + J ’(k)(rk ------ c) + ------J"(k) s k ,

2

we have

1~ 2 2 2
H(c,k, l, z) = H(c,k) + ------J"(k) s k = H(c,k) ------ lR(k) s k/2,

2

where R(k) is the relative risk-aversion coefficient defined

~above. Accordingly, we can interpret H as the expected

instantaneous flow of value minus a premium that measures the

riskiness of the stock of capital currently held.

With (46) in hand it is easy to check the prescriptions of

the Stochastic Maximum Principle against the results we’ve

already derived through other arguments. Clearly (44)

corresponds directly to (35). Likewise, if you multiply (37) by
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dt and combine the result with (38), you will retrieve (45).

IV. Conclusion

These notes have offered intuitive motivation for the basic

optimization principles economists use to solve deterministic and

stochastic continuous-time models. My emphasis throughout has

been on the Bellman principle of dynamic programming, which

offers a unified approach to all types of problems. The Maximum

Principle of optimal control theory follows from Bellman’s

approach in a straightforward manner.

I have only been able to scratch the surface of the topic.

Methods like those described above generalize to much more

complex environments, and have applications much richer than

those I worked through for you. The only way to gain a true

understanding of these tools is through "hands on" learning: you

must apply them yourself in a variety of situations. As I noted

at the outset, abundant applications exist in many areas of

economics. I hope these notes make this fascinating body of

research more approachable.
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